INTERNATIONAL INDIAN SCHOOL- RIYADH
 WORK SHEET- FIRST TERM (2015-2016)
 Subject: Mathematics

Class: IX

Chapter-5: INTRODUCTION TO EUCLID'S GEOMETRY

1. Define the following terms with diagrams.
a. Collinear points
b. Point of intersection
c. Radius of a circle
d. Concurrent lines.
2. If X, Y and Z are three points on a line, and Y lies between X and Z, prove that $X Y+Y Z=X Z$
3. If Q is the midpoint of the line segment $A B$ and P is the midpoint of $A Q$, show that $P Q=1 / 4 \mathrm{AB}$.
4. Prove that an equilateral triangle can be constructed on any given line segment.
5. Write any five axioms and any three postulates of Euclid.
6. Write the difference between 'postulate' and 'axiom'.
7. In the fig. $A E=D F, E$ is the midpoint of $A B$ and F is the midpoint of $D C$. Using a Euclid's axiom, show that $A B=D C$.

B

8. Prove that every line segment has one and only one midpoint.
9. Write Euclid's fifth postulate and state its two equivalent versions.
10. From the fig. given below show that the length $(A H)>$ sum of lengths $(A B+B C+C D)$

11. Prove that two distinct lines cannot have more than one point in common.
12. 'Lines are parallel if they do not intersect' is stated in the form of a \qquad
13. In how many points can two distinct lines at the most intersect?
14. The statements that are proved are called \qquad .
15. Minimum number of points required to fix a line is \qquad .
16. The lines $A O B, C O D$ and EOF are concurrent lines with point of concurrency is \qquad .
17. If B lies between A and C and $A C=10 \mathrm{~cm}, B C=6 \mathrm{~cm}$, find $A B^{2}$.

Chapter- 6: LINES AND ANGLES

1. The angles $(7 x-12)^{0}$ and $(2 x+30)^{0}$ will be angles of a linear pair if $x=$ \qquad
2. In the given figure $\angle A B C=68^{\circ}, \angle B C E=36^{\circ}, \angle E C D=32^{\circ}$, and $\angle C E F=148^{\circ}$. Show that $A B$ is parallel to $E F$.

3. It is given that $\angle P Q R=112^{\circ}$ and $P Q$ is produced to a point X. Draw a figure from the given equation. If ray $Q Y$ bisects $<R Q X$, find $<P Q Y$ and reflex $<Y Q X$.
4. Two complementary angles are such that two times the measure of the first one is three times the measure of the other. Find the measure of the larger angle.
5. In the figure $A B$ is parallel to $C D . \angle C D E=83^{\circ}, \angle B E D=50^{\circ}$, find $\angle A B E$.

6. In the figure $P Q, R S$ and $M N$ are three parallel lines, If $x: y=5: 7$, find $y-z: x+z$

7. Prove that:
a. The sum of the angles of a triangle is 180°
b. If two lines intersect, then the vertically opposite angles are equal.
c. If two parallel lines are intersected by a transversal, the bisectors of the interior angles form a rectangle.

8 . In the fig. side $Q R$ of $\angle P Q R$ has been produced to S, if $\angle P: \angle Q: \angle R=3: 2: 1$ and $R T$ is perpendicular to PR, find $<T R S$

9. In $\triangle A B C, \angle A-\angle B=15^{\circ}, \angle B-<C=30^{\circ}$, find $\angle A, \angle B$ and $\angle C$.
10. In the figure, $C D$ is perpendicular to $A B, \angle A B E=125^{\circ}, \angle B A C=67^{\circ}, \angle A C D=x$ and $\angle D C B=y$ Find the value of $y-x$

11. In $\triangle A B C,<C$. If $A M$ is the bisector of $<B A C$ and $A N$ is perpendicular to $B C$. Prove that

12. Prove that the bisectors of a pair of V.O .A form a straight line.
13. In the fig. find the value of $<A+<B+<C+<D+<E$

14. Three friends walk away from a point in three different directions such that the path of each is equally inclined of those of the other two. Find the angles their paths make with each other.
15. In a $\triangle A B C, \angle B=45^{\circ}, \angle C=81^{\circ}$, and bisector of $\angle A$ meets $B C$ at a point D. Find $\angle A D B$ and <ADC.

